Pairing correlations in N ∼ Z p f-shell nuclei

K. Langanke, D. J. Dean, S. E. Koonin, P. B. Radha

Research output: Contribution to journalArticlepeer-review

Abstract

We perform Shell Model Monte Carlo calculations to study pair correlations in the ground states of N = Z nuclei with masses A = 48-60. We find that T = 1, Jπ = 0+ proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N = Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52-58Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50Mn and 52Fe as exemplars of odd-odd and even-even N = Z nuclei. While for 52Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T = 700 keV, while the isovector correlations among like-nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases.

Original languageEnglish (US)
Pages (from-to)253-266
Number of pages14
JournalNuclear Physics A
Volume613
Issue number3
DOIs
StatePublished - Feb 3 1997

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Pairing correlations in N ∼ Z p f-shell nuclei'. Together they form a unique fingerprint.

Cite this