Abstract
This study introduces a haptic rendering algorithm for simulating surgical bone machining operations. The proposed algorithm is a new variant of the voxmap point-shell method, where the bone and surgical tool geometries are represented by voxels and points, respectively. The algorithm encompasses computationally efficient methods in a data-parallel framework to rapidly query intersecting voxel-point pairs, remove intersected bone voxels to replicate bone removal and compute elemental cutting forces. A new force model is adopted from the composite machining literature to calculate the elemental forces with higher accuracy. The integration of the algorithm with graphic rendering for visuo-haptic simulations is also outlined. The algorithm is benchmarked against state-of-the-art methods and is validated against prior experimental data collected during bone drilling and glenoid reaming trials. The results indicate improvements in computational efficiency and the force/torque prediction accuracy compared to the existing methods, which can be ultimately translated into higher realism in simulating orthopedic procedures.
Original language | English (US) |
---|---|
Article number | 9158351 |
Pages (from-to) | 6388-6395 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 5 |
Issue number | 4 |
DOIs | |
State | Published - Oct 2020 |
Keywords
- Haptics
- bone machining
- glenoid reaming
- surgery simulation
- virtual reality
- visuo-haptics
ASJC Scopus subject areas
- Control and Systems Engineering
- Biomedical Engineering
- Human-Computer Interaction
- Mechanical Engineering
- Computer Vision and Pattern Recognition
- Computer Science Applications
- Control and Optimization
- Artificial Intelligence