TY - JOUR
T1 - Parametric model reduction of mean-field and stochastic systems via higher-order action matching
AU - Berman, Jules
AU - Blickhan, Tobias
AU - Peherstorfer, Benjamin
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - The aim of this work is to learn models of population dynamics of physical systems that feature stochastic and mean-field effects and that depend on physics parameters. The learned models can act as surrogates of classical numerical models to efficiently predict the system behavior over the physics parameters. Building on the Benamou-Brenier formula from optimal transport and action matching, we use a variational problem to infer parameter- and time-dependent gradient fields that represent approximations of the population dynamics. The inferred gradient fields can then be used to rapidly generate sample trajectories that mimic the dynamics of the physical system on a population level over varying physics parameters. We show that combining Monte Carlo sampling with higher-order quadrature rules is critical for accurately estimating the training objective from sample data and for stabilizing the training process. We demonstrate on Vlasov-Poisson instabilities as well as on high-dimensional particle and chaotic systems that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling that simply condition on time and physics parameters.
AB - The aim of this work is to learn models of population dynamics of physical systems that feature stochastic and mean-field effects and that depend on physics parameters. The learned models can act as surrogates of classical numerical models to efficiently predict the system behavior over the physics parameters. Building on the Benamou-Brenier formula from optimal transport and action matching, we use a variational problem to infer parameter- and time-dependent gradient fields that represent approximations of the population dynamics. The inferred gradient fields can then be used to rapidly generate sample trajectories that mimic the dynamics of the physical system on a population level over varying physics parameters. We show that combining Monte Carlo sampling with higher-order quadrature rules is critical for accurately estimating the training objective from sample data and for stabilizing the training process. We demonstrate on Vlasov-Poisson instabilities as well as on high-dimensional particle and chaotic systems that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling that simply condition on time and physics parameters.
UR - http://www.scopus.com/inward/record.url?scp=105000539745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000539745&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000539745
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -