Parathyroid hormone inhibits c-Jun N-terminal kinase activity in rat osteoblastic cells by a protein kinase A-dependent pathway

Teresa A. Doggett, John T. Swarthout, Stephen C. Jefcoat, Dagmar Wilhelm, Andreas Dieckmann, Peter Angel, Nicola C. Partridge

Research output: Contribution to journalArticlepeer-review

Abstract

Treatment of osteoblastic cells with PTH initiates dual signaling cascades resulting in activation of both PKA and PKC. It has been shown that PTH either inhibits or stimulates ERKs depending on dose of the hormone; nevertheless, the ability of PTH to regulate other members of the MAPK family is unknown. Another member of this family, c-Jun-NH2-terminal kinase (JNK), is preferentially activated by cytokines and cellular stresses and plays a key role in regulating the activity of various transcription factors. We demonstrate that treatment of UMR 106-01 cells and rat calvarial osteoblasts with PTH (10-8 M), N-terminal peptides of PTH that selectively activate PKA, or 8-bromo-cAMP (activates PKA) results in the inhibition of JNK activity from high basal levels. Examination of the upstream members of the JNK cascade revealed that both stress-activated protein kinase/extracellular signal-related kinase kinase 1/MAPK kinase 4 and MAPK/extracellular signal-related kinase kinase kinase 1 activities were also inhibited after treatment with PTH (10-8 M). We conclude that treatment of osteoblastic cells with PTH is sufficient to inhibit high basal JNK activity by activation of the PKA signaling cascade.

Original languageEnglish (US)
Pages (from-to)1880-1888
Number of pages9
JournalEndocrinology
Volume143
Issue number5
DOIs
StatePublished - 2002

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Parathyroid hormone inhibits c-Jun N-terminal kinase activity in rat osteoblastic cells by a protein kinase A-dependent pathway'. Together they form a unique fingerprint.

Cite this