TY - GEN
T1 - Path loss, shadow fading, and line-of-sight probability models for 5G urban macro-cellular scenarios
AU - Sun, Shu
AU - Thomas, Timothy A.
AU - Rappaport, Theodore S.
AU - Nguyen, Huan
AU - Kovacs, Istvan Z.
AU - Rodriguez, Ignacio
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015
Y1 - 2015
N2 - This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro- cellular (UMa) scenarios, using the data obtained from propagation measurements at 38 GHz in Austin, US, and at 2, 10, 18, and 28 GHz in Aalborg, Denmark. A comparison of different LOS probability models is performed for the Aalborg environment. Alpha- betagamma and close-in reference distance path loss models are studied in depth to show their value in channel modeling. Additionally, both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors on measured path loss values. While the results show that the dual-slope large-scale path loss model can slightly reduce RMS errors compared to its singleslope counterpart in non-line-of-sight (NLOS) conditions, the improvement is not significant enough to warrant adopting the dual- slope path loss model. Furthermore, the shadow fading magnitude versus distance is explored, showing a slight increasing trend in LOS and a decreasing trend in NLOS based on the Aalborg data, but more measurements are necessary to gain a better knowledge of the UMa channels at centimeter- and millimeter-wave frequency bands.
AB - This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro- cellular (UMa) scenarios, using the data obtained from propagation measurements at 38 GHz in Austin, US, and at 2, 10, 18, and 28 GHz in Aalborg, Denmark. A comparison of different LOS probability models is performed for the Aalborg environment. Alpha- betagamma and close-in reference distance path loss models are studied in depth to show their value in channel modeling. Additionally, both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors on measured path loss values. While the results show that the dual-slope large-scale path loss model can slightly reduce RMS errors compared to its singleslope counterpart in non-line-of-sight (NLOS) conditions, the improvement is not significant enough to warrant adopting the dual- slope path loss model. Furthermore, the shadow fading magnitude versus distance is explored, showing a slight increasing trend in LOS and a decreasing trend in NLOS based on the Aalborg data, but more measurements are necessary to gain a better knowledge of the UMa channels at centimeter- and millimeter-wave frequency bands.
UR - http://www.scopus.com/inward/record.url?scp=84971349973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971349973&partnerID=8YFLogxK
U2 - 10.1109/GLOCOMW.2015.7414036
DO - 10.1109/GLOCOMW.2015.7414036
M3 - Conference contribution
AN - SCOPUS:84971349973
T3 - 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings
BT - 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE Globecom Workshops, GC Wkshps 2015
Y2 - 6 December 2015 through 10 December 2015
ER -