PC-Net: Unsupervised Point Correspondence Learning with Neural Networks

Xiang Li, Lingjing Wang, Yi Fang

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Point sets correspondence concerns with the establishment of point-wise correspondence for a group of 2D or 3D point sets with similar shape description. Existing methods often iteratively search for the optimal point-wise correspondence assignment for two sets of points, driven by maximizing the similarity between two sets of explicitly designed point features or by determining the parametric transformation for the best alignment between two point sets. In contrast, without depending on the explicit definitions of point features or transformation, our paper introduces a novel point correspondence neural networks (PC-Net) that is able to learn and predict the point correspondence among the populations of a specific object (e.g. fish, human, chair, etc) in an unsupervised manner. Specifically, in this paper, we first develop an encoder to learn the shape descriptor from a point set that captures essential global and deformation-insensitive geometric properties. Then followed with a novel motion-driven process, our PC-Net drives a template shape, that consists of a set of landmark points, morph and conform around a target shape object which is reconstructed through decoding the previously characterized shape descriptor. As a result, the motion-driven process progressively and coherently drifts all landmark points from the template shape to corresponding positions on the target object shape. The experimental results demonstrate that PC-Net can establish robust unsupervised point correspondence over a group of deformable object shapes in the presence of geometric noise and missing points. More importantly, with great generalization capability, PC-Net is capable of instantly predicting group point corresponding for unseen point sets.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on 3D Vision, 3DV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages10
ISBN (Electronic)9781728131313
StatePublished - Sep 2019
Event7th International Conference on 3D Vision, 3DV 2019 - Quebec, Canada
Duration: Sep 15 2019Sep 18 2019

Publication series

NameProceedings - 2019 International Conference on 3D Vision, 3DV 2019


Conference7th International Conference on 3D Vision, 3DV 2019


  • Unsupervised learning
  • correspondence
  • landmark
  • point cloud

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Media Technology
  • Modeling and Simulation


Dive into the research topics of 'PC-Net: Unsupervised Point Correspondence Learning with Neural Networks'. Together they form a unique fingerprint.

Cite this