Peptoid nanosheets exhibit a new secondary-structure motif

Ranjan V. Mannige, Thomas K. Haxton, Caroline Proulx, Ellen J. Robertson, Alessia Battigelli, Glenn L. Butterfoss, Ronald N. Zuckermann, Stephen Whitelam

Research output: Contribution to journalArticle

Abstract

A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers - structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.

Original languageEnglish (US)
Pages (from-to)415-420
Number of pages6
JournalNature
Volume526
Issue number7573
DOIs
StatePublished - Oct 15 2015

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Peptoid nanosheets exhibit a new secondary-structure motif'. Together they form a unique fingerprint.

  • Cite this

    Mannige, R. V., Haxton, T. K., Proulx, C., Robertson, E. J., Battigelli, A., Butterfoss, G. L., Zuckermann, R. N., & Whitelam, S. (2015). Peptoid nanosheets exhibit a new secondary-structure motif. Nature, 526(7573), 415-420. https://doi.org/10.1038/nature15363