Perceive, Attend, and Drive: Learning Spatial Attention for Safe Self-Driving

Bob Wei, Mengye Ren, Wenyuan Zeng, Ming Liang, Bin Yang, Raquel Urtasun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose an end-to-end self-driving network featuring a sparse attention module that learns to automatically attend to important regions of the input. The attention module specifically targets motion planning, whereas prior literature only applied attention in perception tasks. Learning an attention mask directly targeted for motion planning significantly improves the planner safety by performing more focused computation. Furthermore, visualizing the attention improves interpretability of end-to-end self-driving.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4875-4881
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: May 30 2021Jun 5 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period5/30/216/5/21

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Perceive, Attend, and Drive: Learning Spatial Attention for Safe Self-Driving'. Together they form a unique fingerprint.

Cite this