Perception and memory have distinct spatial tuning properties in human visual cortex

Serra E. Favila, Brice A. Kuhl, Jonathan Winawer

Research output: Contribution to journalArticlepeer-review


Reactivation of earlier perceptual activity is thought to underlie long-term memory recall. Despite evidence for this view, it is unclear whether mnemonic activity exhibits the same tuning properties as feedforward perceptual activity. Here, we leverage population receptive field models to parameterize fMRI activity in human visual cortex during spatial memory retrieval. Though retinotopic organization is present during both perception and memory, large systematic differences in tuning are also evident. Whereas there is a three-fold decline in spatial precision from early to late visual areas during perception, this pattern is not observed during memory retrieval. This difference cannot be explained by reduced signal-to-noise or poor performance on memory trials. Instead, by simulating top-down activity in a network model of cortex, we demonstrate that this property is well explained by the hierarchical structure of the visual system. Together, modeling and empirical results suggest that computational constraints imposed by visual system architecture limit the fidelity of memory reactivation in sensory cortex.

Original languageEnglish (US)
Article number5864
JournalNature communications
Issue number1
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General
  • General Physics and Astronomy


Dive into the research topics of 'Perception and memory have distinct spatial tuning properties in human visual cortex'. Together they form a unique fingerprint.

Cite this