TY - GEN
T1 - Performance Impact Analysis of Beam Switching in Millimeter Wave Vehicular Communications
AU - Kanhere, Ojas
AU - Chopra, Aditya
AU - Thornburg, Andrew
AU - Rappaport, Theodore S.
AU - Ghassemzadeh, Saeed S.
N1 - Funding Information:
This research is supported by the NYU WIRELESS Industrial Affiliates Program, AT&T Labs, and National Science Foundation (NSF) Research Grants: 1909206.
Publisher Copyright:
© 2021 IEEE.
PY - 2021/4
Y1 - 2021/4
N2 - Millimeter wave wireless spectrum deployments will allow vehicular communications to share high data rate vehicular sensor data in real-time. The highly directional nature of wireless links in millimeter spectral bands will require continuous channel measurements to ensure the transmitter (TX) and receiver (RX) beams are aligned to provide the best channel. Using real-world vehicular mmWave measurement data at 28 GHz, we determine the optimal beam sweeping period, i.e. the frequency of the channel measurements, to align the RX beams to the best channel directions for maximizing the vehicle-to-infrastructure (V2I) throughput. We show that in a realistic vehicular traffic environment in Austin, TX, for a vehicle traveling at an average speed of 10.5 mph, a beam sweeping period of 300 ms in future V2I communication standards would maximize the V2I throughput, using a system of four RX phased arrays that scanned the channel 360 degrees in the azimuth and 30 degrees above and below the boresight. We also investigate the impact of the number of active RX chains controlling the steerable phased arrays on V2I throughput. Reducing the number of RX chains controlling the phased arrays helps reduce the cost of the vehicular mmWave hardware while multiple RX chains, although more expensive, provide more robustness to beam direction changes at the vehicle, allowing near maximum throughput over a wide range of beam sweep periods. We show that the overhead of utilizing one RX chain instead of four leads to a 10% drop in mean V2I throughput over six non-line-of-sight runs in real traffic conditions, with each run being 10 to 20 seconds long over a distance of 40 to 90 meters.
AB - Millimeter wave wireless spectrum deployments will allow vehicular communications to share high data rate vehicular sensor data in real-time. The highly directional nature of wireless links in millimeter spectral bands will require continuous channel measurements to ensure the transmitter (TX) and receiver (RX) beams are aligned to provide the best channel. Using real-world vehicular mmWave measurement data at 28 GHz, we determine the optimal beam sweeping period, i.e. the frequency of the channel measurements, to align the RX beams to the best channel directions for maximizing the vehicle-to-infrastructure (V2I) throughput. We show that in a realistic vehicular traffic environment in Austin, TX, for a vehicle traveling at an average speed of 10.5 mph, a beam sweeping period of 300 ms in future V2I communication standards would maximize the V2I throughput, using a system of four RX phased arrays that scanned the channel 360 degrees in the azimuth and 30 degrees above and below the boresight. We also investigate the impact of the number of active RX chains controlling the steerable phased arrays on V2I throughput. Reducing the number of RX chains controlling the phased arrays helps reduce the cost of the vehicular mmWave hardware while multiple RX chains, although more expensive, provide more robustness to beam direction changes at the vehicle, allowing near maximum throughput over a wide range of beam sweep periods. We show that the overhead of utilizing one RX chain instead of four leads to a 10% drop in mean V2I throughput over six non-line-of-sight runs in real traffic conditions, with each run being 10 to 20 seconds long over a distance of 40 to 90 meters.
KW - 5G
KW - V2V
KW - V2X
KW - beam management
KW - channel sounding
KW - mmWave
KW - phased arrays
KW - sidelink
UR - http://www.scopus.com/inward/record.url?scp=85102786410&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102786410&partnerID=8YFLogxK
U2 - 10.1109/VTC2021-Spring51267.2021.9448914
DO - 10.1109/VTC2021-Spring51267.2021.9448914
M3 - Conference contribution
AN - SCOPUS:85102786410
T3 - IEEE Vehicular Technology Conference
BT - 2021 IEEE 93rd Vehicular Technology Conference, VTC 2021-Spring - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 93rd IEEE Vehicular Technology Conference, VTC 2021-Spring
Y2 - 25 April 2021 through 28 April 2021
ER -