Abstract
In this paper, a robust nonlinear dynamic controller is designed to achieve global practical stabilization for position tracking error of a voltage-fed permanent-magnet stepper motor. The control design is an output-feedback design that utilizes only rotor position measurement. Rotor velocity and stator phase currents are not available for feedback. Furthermore, only upper and lower bounds are required for the electromechanical parameters of the motor. The proposed controller is robust to load torques, friction, cogging forces, and other disturbances satisfying certain bounds. These results can also be extended to other classes of motors.
Original language | English (US) |
---|---|
Pages (from-to) | 3180-3185 |
Number of pages | 6 |
Journal | Proceedings of the American Control Conference |
Volume | 4 |
DOIs | |
State | Published - 2002 |
Event | 2002 American Control Conference - Anchorage, AK, United States Duration: May 8 2002 → May 10 2002 |
ASJC Scopus subject areas
- Electrical and Electronic Engineering