Personalized page rank for named entity disambiguation

Maria Pershina, Yifan He, Ralph Grishman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The task of Named Entity Disambiguation is to map entity mentions in the document to their correct entries in some knowledge base. We present a novel graph-based disambiguation approach based on Personalized PageRank (PPR) that combines local and global evidence for disambiguation and effectively filters out noise introduced by incorrect candidates. Experiments show that our method outperforms state-of-the-art approaches by achieving 91.7% in micro-and 89.9% in macroaccuracy on a dataset of 27.8K named entity mentions.

Original languageEnglish (US)
Title of host publicationNAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages238-243
Number of pages6
ISBN (Electronic)9781941643495
DOIs
StatePublished - 2015
EventConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015 - Denver, United States
Duration: May 31 2015Jun 5 2015

Publication series

NameNAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Other

OtherConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015
Country/TerritoryUnited States
CityDenver
Period5/31/156/5/15

ASJC Scopus subject areas

  • Computer Science Applications
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Personalized page rank for named entity disambiguation'. Together they form a unique fingerprint.

Cite this