Phase-field models of floe fracture in sea ice

Huy Dinh, Dimitrios Giannakis, Joanna Slawinska, Georg Stadler

Research output: Contribution to journalArticlepeer-review


We develop a phase-field model of brittle fracture to model fracture in sea ice floes. Phase fields allow for a variational formulation of fracture by using an energy functional that combines a linear elastic energy with a term modeling the energetic cost of fracture. We study the fracture strength of ice floes with stochastic thickness variations under boundary forcings or displacements. Our approach models refrozen cracks or other linear ice impurities with stochastic models for thickness profiles. We find that the orientation of thickness variations is an important factor for the strength of ice floes, and we study the distribution of critical stresses leading to fracture. Potential applications to discrete element method (DEM) simulations and field data from the ICEX 2018 campaign are discussed.

Original languageEnglish (US)
Pages (from-to)3883-3893
Number of pages11
Issue number9
StatePublished - Sep 7 2023

ASJC Scopus subject areas

  • Water Science and Technology
  • Earth-Surface Processes


Dive into the research topics of 'Phase-field models of floe fracture in sea ice'. Together they form a unique fingerprint.

Cite this