Phase-resolved reflectance spectroscopy on layered turbid media

Andreas H. Hielscher, Hanli Liu, Britton Chance, Frank K. Tittel, Steven L. Jacques

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.

    Original languageEnglish (US)
    Title of host publicationOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media
    Subtitle of host publicationTheory, Human Studies, and Instrumentation
    EditorsBritton Chance, Robert R. Alfano
    PublisherSPIE
    Pages248-256
    Number of pages9
    ISBN (Electronic)9780819417367
    DOIs
    StatePublished - May 30 1995
    EventOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation - San Jose, United States
    Duration: Feb 1 1995Feb 28 1995

    Publication series

    NameProceedings of SPIE - The International Society for Optical Engineering
    Volume2389
    ISSN (Print)0277-786X
    ISSN (Electronic)1996-756X

    Other

    OtherOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation
    CountryUnited States
    CitySan Jose
    Period2/1/952/28/95

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics
    • Computer Science Applications
    • Applied Mathematics
    • Electrical and Electronic Engineering

    Fingerprint Dive into the research topics of 'Phase-resolved reflectance spectroscopy on layered turbid media'. Together they form a unique fingerprint.

    Cite this