Abstract
Controlling the release or uptake of (bio-) molecules and drugs from liposomes is critically important for a range of applications in bioengineering, synthetic biology, and drug delivery. In this paper, we report how the reversible photoswitching of synthetic lipid bilayer membranes made from azobenzene-containing phosphatidylcholine (azo-PC) molecules (photolipids) leads to increased membrane permeability. We show that cell-sized, giant unilamellar vesicles (GUVs) prepared from photolipids display leakage of fluorescent dyes after irradiation with UV-A and visible light. Langmuir-Blodgett and patch-clamp measurements show that the permeability is the result of transient pore formation. By comparing the trans-to-cis and cis-to-trans isomerization process, we find that this pore formation is the result of area fluctuations and a change of the area cross-section between both photolipid isomers.
Original language | English (US) |
---|---|
Pages (from-to) | 13509-13515 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 36 |
Issue number | 45 |
DOIs | |
State | Published - Nov 17 2020 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry