Physicochemical decellularization of composite flexor tendon-bone interface grafts

Joel A. Bronstein, Colin Y.L. Woon, Simon Farnebo, Anthony W. Behn, Taliah Schmitt, Hung Pham, Alesha B. Castillo, James Chang

    Research output: Contribution to journalArticle

    Abstract

    BACKGROUND: Extremity injuries involving tendon attachment to bone are difficult to address. Clinically, tendon-bone interface allografts must be decellularized to reduce immunogenicity. Composite grafts are difficult to decellularize because chemical agents cannot reach cells between tissues. In this study, the authors attempted to optimize tendon-bone interface graft decellularization. METHODS: Human flexor digitorum profundus tendons with attached distal phalanx were harvested from cadavers and divided into four groups. Group 1 (control) was untreated. Group 2 (chemical) was chemically treated with 5% peracetic acid, 0.1% ethylenediaminetetraacetic acid, and 0.1% sodium dodecyl sulfate. Group 3 (low-power) underwent targeted ultrasonication for 3 minutes (22,274 J, 126W) followed by chemical decellularization. Group 4 (high-power) underwent targeted ultrasonication for 10 minutes (88,490 J, 155W) followed by chemical decellularization. Decellularization was assessed histologically with hematoxylin and eosin stain and stains for major histocompatibility complex I stains. Cell counts were performed. The ultimate tensile load of decellularized grafts (group 4) were compared with pair-matched untreated grafts (group 1). RESULTS: Average cell counts were 100 ± 41, 27 ± 10, 12 ± 11, and 6 ± 11 per high-power field for groups 1, 2, 3, and 4, respectively (p < 0.001). Decellularization using physical and chemical treatments (groups 3 and 4) resulted in substantial reduction of cells and major histocompatibility complex I molecules. There was no difference in ultimate tensile load between treated (group4) and untreated (group 1) samples (p > 0.5). CONCLUSIONS: Physicochemical decellularization of tendon-bone interface grafts using targeted ultrasonication and chemical treatment resulted in near-complete reduction in cellularity and maintenance of tensile strength. In the future, these decellularized composite scaffolds may be used for reconstruction of tendon-bone injuries.

    Original languageEnglish (US)
    Pages (from-to)94-102
    Number of pages9
    JournalPlastic and reconstructive surgery
    Volume132
    Issue number1
    DOIs
    StatePublished - Jul 2013

    ASJC Scopus subject areas

    • Surgery

    Fingerprint Dive into the research topics of 'Physicochemical decellularization of composite flexor tendon-bone interface grafts'. Together they form a unique fingerprint.

  • Cite this

    Bronstein, J. A., Woon, C. Y. L., Farnebo, S., Behn, A. W., Schmitt, T., Pham, H., Castillo, A. B., & Chang, J. (2013). Physicochemical decellularization of composite flexor tendon-bone interface grafts. Plastic and reconstructive surgery, 132(1), 94-102. https://doi.org/10.1097/PRS.0b013e318290f5fc