Plasma mitigation of shock wave: Experiments and theory

Spencer P. Kuo

Research output: Contribution to journalArticlepeer-review


Two types of plasma spikes, generated by on-board 60 Hz periodic and pulsed dc electric discharges in front of two slightly different wind tunnel models, were used to demonstrate the non-thermal plasma techniques for shock wave mitigation. The experiments were conducted in a Mach 2.5 wind tunnel. (1) In the periodic discharge case, the results show a transformation of the shock from a well-defined attached shock into a highly curved shock structure, which has increased shock angle and also appears in diffused form. As shown in a sequence with increasing discharge intensity, the shock in front of the model moves upstream to become detached with increasing standoff distance from the model and is eliminated near the peak of the discharge. The power measurements exclude the heating effect as a possible cause of the observed shock wave modification. A theory using a cone model as the shock wave generator is presented to explain the observed plasma effect on shock wave. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow; such a flow deflection modifies the structure of the shock wave generated by the cone model, as shown by the numerical results, from a conic shape to a curved one. The shock front moves upstream with a larger shock angle, matching well with that observed in the experiment. (2) In the pulsed dc discharge case, hollow cone-shaped plasma that envelops the physical spike of a truncated cone model is produced in the discharge; consequently, the original bow shock is modified to a conical shock, equivalent to reinstating the model into a perfect cone and to increase the body aspect ratio by 70%. A significant wave drag reduction in each discharge is inferred from the pressure measurements; at the discharge maximum, the pressure on the frontal surface of the body decreases by more than 30%, the pressure on the cone surface increases by about 5%, whereas the pressure on the cylinder surface remains unchanged. The energy saving from drag reduction is estimated to make up two-thirds of the energy consumed in the electric discharge for the plasma generation. The measurements also show that the plasma effect on the shock structure lasts much longer than the discharge period.

Original languageEnglish (US)
Pages (from-to)225-239
Number of pages15
JournalShock Waves
Issue number4
StatePublished - Dec 2007

ASJC Scopus subject areas

  • Mechanical Engineering
  • General Physics and Astronomy


Dive into the research topics of 'Plasma mitigation of shock wave: Experiments and theory'. Together they form a unique fingerprint.

Cite this