TY - JOUR
T1 - Pleats in crystals on curved surfaces
AU - Irvine, William T.M.
AU - Vitelli, Vincenzo
AU - Chaikin, Paul M.
N1 - Funding Information:
Acknowledgements We acknowledge discussions with M. Bowick, A. Grosberg, S.Sacanna and A. M.Turner. W.T.M.I. acknowledges guidance inparticle synthesisfrom A. D. Hollingsworth and M. T. Elsesser. W.T.M.I. acknowledges support from Rhodia and the English Speaking Union. P.M.C. acknowledges support from MRSEC DMR-0820341 and NASA NNX08AK04G. W.T.M.I. and V.V. acknowledge hospitality from Stichting FOM and the Aspen Center for Physics.
PY - 2010/12/16
Y1 - 2010/12/16
N2 - Hexagons can easily tile a flat surface, but not a curved one. Introducing heptagons and pentagons (defects with topological charge) makes it easier to tile curved surfaces; for example, soccer balls based on the geodesic domes of Buckminster Fuller have exactly 12 pentagons (positive charges). Interacting particles that invariably form hexagonal crystals on a plane exhibit fascinating scarred defect patterns on a sphere. Here we show that, for more general curved surfaces, curvature may be relaxed by pleats: uncharged lines of dislocations (topological dipoles) that vanish on the surface and play the same role as fabric pleats. We experimentally investigate crystal order on surfaces with spatially varying positive and negative curvature. On cylindrical capillary bridges, stretched to produce negative curvature, we observe a sequence of transitionsconsistent with our energetic calculationsfrom no defects to isolated dislocations, which subsequently proliferate and organize into pleats; finally, scars and isolated heptagons (previously unseen) appear. This fine control of crystal order with curvature will enable explorations of general theories of defects in curved spaces. From a practical viewpoint, it may be possible to engineer structures with curvature (such as waisted nanotubes and vaulted architecture) and to develop novel methods for soft lithography and directed self-assembly.
AB - Hexagons can easily tile a flat surface, but not a curved one. Introducing heptagons and pentagons (defects with topological charge) makes it easier to tile curved surfaces; for example, soccer balls based on the geodesic domes of Buckminster Fuller have exactly 12 pentagons (positive charges). Interacting particles that invariably form hexagonal crystals on a plane exhibit fascinating scarred defect patterns on a sphere. Here we show that, for more general curved surfaces, curvature may be relaxed by pleats: uncharged lines of dislocations (topological dipoles) that vanish on the surface and play the same role as fabric pleats. We experimentally investigate crystal order on surfaces with spatially varying positive and negative curvature. On cylindrical capillary bridges, stretched to produce negative curvature, we observe a sequence of transitionsconsistent with our energetic calculationsfrom no defects to isolated dislocations, which subsequently proliferate and organize into pleats; finally, scars and isolated heptagons (previously unseen) appear. This fine control of crystal order with curvature will enable explorations of general theories of defects in curved spaces. From a practical viewpoint, it may be possible to engineer structures with curvature (such as waisted nanotubes and vaulted architecture) and to develop novel methods for soft lithography and directed self-assembly.
UR - http://www.scopus.com/inward/record.url?scp=78650389042&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78650389042&partnerID=8YFLogxK
U2 - 10.1038/nature09620
DO - 10.1038/nature09620
M3 - Article
C2 - 21164482
AN - SCOPUS:78650389042
SN - 0028-0836
VL - 468
SP - 947
EP - 951
JO - Nature
JF - Nature
IS - 7326
ER -