Abstract
Estimating a vector x from noisy linear measurements Ax + w often requires use of prior knowledge or structural constraints on x for accurate reconstruction. Several recent works have considered combining linear least-squares estimation with a generic or “plug-in” denoiser function that can be designed in a modular manner based on the prior knowledge about x. While these methods have shown excellent performance, it has been difficult to obtain rigorous performance guarantees. This work considers plug-in denoising combined with the recently-developed Vector Approximate Message Passing (VAMP) algorithm, which is itself derived via Expectation Propagation techniques. It shown that the mean squared error of this “plug-and-play" VAMP can be exactly predicted for high-dimensional right-rotationally invariant random A and Lipschitz denoisers. The method is demonstrated on applications in image recovery and parametric bilinear estimation.
Original language | English (US) |
---|---|
Pages (from-to) | 7440-7449 |
Number of pages | 10 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing