Polythiol-anchored DNA monolayers for biosensing applications

P. A. Johnson, R. L. Levicky

Research output: Contribution to journalConference articlepeer-review

Abstract

Recent technological advances have seen the development of various platforms for detecting biomolecular interactions. An important aspect of the modification of solid supports with biological polymers is to anchor the molecule of interest permanently and in well-defined attachment geometry. Gold is the most common metal support for research applications but suffers from a lack of methods for producing robust biomolecular films that can withstand prolonged use, especially at elevated temperatures. This paper reports on the development of a novel attachment scheme for immobilizing biomolecules to metal supports. Poly(mercaptopropyl)methylsiloxane (PMPMS) films chemisorbed on gold provide thermally stable, nanometer-thin, thiol-rich anchor layers suitable for subsequent attachment of biomolecules. The exceptional stability of PMPMS-anchored single stranded DNA monolayers is anticipated to benefit applications in biomolecular diagnostics, as well as assist in fundamental investigations of biomacromolecules at interfaces. In an attempt to exploit PMPMS films in impedance-based biodiagnostics, initial studies have shown that immobilization of DNA to the PMPMS modified Au surfaces lowers the interfacial capacitance. Preliminary results on hybridization of target DNA to the probe modified surfaces show that impedance changes can be measured.

Original languageEnglish (US)
Article number10.1.1
Pages (from-to)206-208
Number of pages3
JournalProceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC
StatePublished - 2005
EventProceedings of the 2005 IEEE 31st Annual Northeast Bioengineering Conference - Hoboken, NJ, United States
Duration: Apr 2 2005Apr 3 2005

ASJC Scopus subject areas

  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Polythiol-anchored DNA monolayers for biosensing applications'. Together they form a unique fingerprint.

Cite this