Abstract
Graph neural networks (GNNs) provide a powerful and scalable solution for modeling continuous spatial data. However, they often rely on Euclidean distances to construct the input graphs. This assumption can be improbable in many real-world settings, where the spatial structure is more complex and explicitly non-Euclidean (e.g., road networks). Here, we propose PE-GNN, a new framework that incorporates spatial context and correlation explicitly into the models. Building on recent advances in geospatial auxiliary task learning and semantic spatial embeddings, our proposed method (1) learns a context-aware vector encoding of the geographic coordinates and (2) predicts spatial autocorrelation in the data in parallel with the main task. On spatial interpolation and regression tasks, we show the effectiveness of our approach, improving performance over different state-of-the-art GNN approaches. We observe that our approach not only vastly improves over the GNN baselines, but can match Gaussian processes, the most commonly utilized method for spatial interpolation problems.
Original language | English (US) |
---|---|
Pages (from-to) | 1379-1389 |
Number of pages | 11 |
Journal | Proceedings of Machine Learning Research |
Volume | 206 |
State | Published - 2023 |
Event | 26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023 - Valencia, Spain Duration: Apr 25 2023 → Apr 27 2023 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability