TY - JOUR
T1 - Power and sample size calculations for the Wilcoxon-Mann-Whitney test in the presence of death-censored observations
AU - Matsouaka, Roland A.
AU - Betensky, Rebecca A.
N1 - Publisher Copyright:
© 2014 John Wiley & Sons, Ltd.
PY - 2015/2/10
Y1 - 2015/2/10
N2 - We consider a clinical trial of a potentially lethal disease in which patients are randomly assigned to two treatment groups and are followed for a fixed period of time; a continuous endpoint is measured at the end of follow-up. For some patients; however, death (or severe disease progression) may preclude measurement of the endpoint. A statistical analysis that includes only patients with endpoint measurements may be biased. An alternative analysis includes all randomized patients, with rank scores assigned to the patients who are available for the endpoint measurement on the basis of the magnitude of their responses and with 'worst-rank' scores assigned to those patients whose death precluded the measurement of the continuous endpoint. The worst-rank scores are worse than all observed rank scores. The treatment effect is then evaluated using the Wilcoxon-Mann-Whitney test. In this paper, we derive closed-form formulae for the power and sample size of the Wilcoxon-Mann-Whitney test when missing measurements of the continuous endpoints because of death are replaced by worst-rank scores. We distinguish two approaches for assigning the worst-rank scores. In the tied worst-rank approach, all deaths are weighted equally, and the worst-rank scores are set to a single value that is worse than all measured responses. In the untied worst-rank approach, the worst-rank scores further rank patients according to their time of death, so that an earlier death is considered worse than a later death, which in turn is worse than all measured responses. In addition, we propose four methods for the implementation of the sample size formulae for a trial with expected early death. We conduct Monte Carlo simulation studies to evaluate the accuracy of our power and sample size formulae and to compare the four sample size estimation methods.
AB - We consider a clinical trial of a potentially lethal disease in which patients are randomly assigned to two treatment groups and are followed for a fixed period of time; a continuous endpoint is measured at the end of follow-up. For some patients; however, death (or severe disease progression) may preclude measurement of the endpoint. A statistical analysis that includes only patients with endpoint measurements may be biased. An alternative analysis includes all randomized patients, with rank scores assigned to the patients who are available for the endpoint measurement on the basis of the magnitude of their responses and with 'worst-rank' scores assigned to those patients whose death precluded the measurement of the continuous endpoint. The worst-rank scores are worse than all observed rank scores. The treatment effect is then evaluated using the Wilcoxon-Mann-Whitney test. In this paper, we derive closed-form formulae for the power and sample size of the Wilcoxon-Mann-Whitney test when missing measurements of the continuous endpoints because of death are replaced by worst-rank scores. We distinguish two approaches for assigning the worst-rank scores. In the tied worst-rank approach, all deaths are weighted equally, and the worst-rank scores are set to a single value that is worse than all measured responses. In the untied worst-rank approach, the worst-rank scores further rank patients according to their time of death, so that an earlier death is considered worse than a later death, which in turn is worse than all measured responses. In addition, we propose four methods for the implementation of the sample size formulae for a trial with expected early death. We conduct Monte Carlo simulation studies to evaluate the accuracy of our power and sample size formulae and to compare the four sample size estimation methods.
KW - Composite outcome
KW - Informative missingness
KW - Intention-to-treat
KW - Worst-rank scores, Wilcoxon rank sum test
UR - http://www.scopus.com/inward/record.url?scp=84920742395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920742395&partnerID=8YFLogxK
U2 - 10.1002/sim.6355
DO - 10.1002/sim.6355
M3 - Article
C2 - 25393385
AN - SCOPUS:84920742395
SN - 0277-6715
VL - 34
SP - 406
EP - 431
JO - Statistics in Medicine
JF - Statistics in Medicine
IS - 3
ER -