Power Efficient Multi-Carrier Baseband Processing for 5G and 6G Wireless

Panagiotis Skrimponis, Seyed Hadi Mirfarshbafan, Christoph Studer, Sundeep Rangan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Power consumption is one of the significant challenges in millimeter wave (mmWave) systems due to the need to support wide bandwidths and large numbers of antennas. This paper explores energy efficient implementations of the baseband trans-receiver components for a multi-carrier 3GPP New Radio (NR) system. The analysis considers key components including channel selection filters, digital beamforming and FFT engines for the OFDM processing. A methodology is presented for optimizing bit widths in various components, which is critical in low power designs. Fully digital and analog beamforming architectures are also compared. Preliminary power estimates are provided using a TSMC 28 nm process for a 400 MHz system at 28 GHz similar to 5G systems today and a hypothetical 1.6 GHz system at 140 GHz for potential 6G deployment.

Original languageEnglish (US)
Title of host publicationConference Record of the 54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages324-330
Number of pages7
ISBN (Electronic)9780738131269
DOIs
StatePublished - Nov 1 2020
Event54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020 - Pacific Grove, United States
Duration: Nov 1 2020Nov 5 2020

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2020-November
ISSN (Print)1058-6393

Conference

Conference54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
Country/TerritoryUnited States
CityPacific Grove
Period11/1/2011/5/20

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Power Efficient Multi-Carrier Baseband Processing for 5G and 6G Wireless'. Together they form a unique fingerprint.

Cite this