TY - JOUR
T1 - Precise Photochemical Post-Processing of Molecular Crystals
AU - Qi, Jianqun
AU - Lan, Linfeng
AU - Chen, Quanliang
AU - Li, Liang
AU - Naumov, Panče
AU - Zhang, Hongyu
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2025/1/27
Y1 - 2025/1/27
N2 - Molecular crystals carry a great potential as new soft smart materials, with a plethora of recent examples overcoming the major obstacle of mechanical flexibility, and this research direction holds enormous potential to revolutionize optics, electronics, medicine, and space exploration. However, shaping organic crystals into desired shapes and sizes remains a major practical challenge due to the lack of control over the crystallization process, and the difficulties in mechanical post-processing without introduction of defects that are usually imparted by their soft nature. Here we present an innovative approach that employs photochemical processing for precise and nondestructive cutting of a molecular crystal. Our proposed method uses light to post-process crystals of the desired size and shape, similar to using light to cut other materials. This reaction induces strain, ensuring sharp cleavage without the need for melting or other processes. We further demonstrate the potential of this approach by producing crystals of arbitrary size, which can be used as controllable optical waveguides. Among other potential applications, this method can be used to prepare dynamic crystals, particularly those with aspect ratios crucial for mechanical deformation, such as flexible electronics, soft robotics, and sensing.
AB - Molecular crystals carry a great potential as new soft smart materials, with a plethora of recent examples overcoming the major obstacle of mechanical flexibility, and this research direction holds enormous potential to revolutionize optics, electronics, medicine, and space exploration. However, shaping organic crystals into desired shapes and sizes remains a major practical challenge due to the lack of control over the crystallization process, and the difficulties in mechanical post-processing without introduction of defects that are usually imparted by their soft nature. Here we present an innovative approach that employs photochemical processing for precise and nondestructive cutting of a molecular crystal. Our proposed method uses light to post-process crystals of the desired size and shape, similar to using light to cut other materials. This reaction induces strain, ensuring sharp cleavage without the need for melting or other processes. We further demonstrate the potential of this approach by producing crystals of arbitrary size, which can be used as controllable optical waveguides. Among other potential applications, this method can be used to prepare dynamic crystals, particularly those with aspect ratios crucial for mechanical deformation, such as flexible electronics, soft robotics, and sensing.
KW - crystal machining
KW - crystal modification
KW - organic crystal
KW - photochemical reaction
UR - http://www.scopus.com/inward/record.url?scp=85210470073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85210470073&partnerID=8YFLogxK
U2 - 10.1002/anie.202417409
DO - 10.1002/anie.202417409
M3 - Article
C2 - 39561039
AN - SCOPUS:85210470073
SN - 1433-7851
VL - 64
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 5
M1 - e202417409
ER -