TY - JOUR
T1 - Predicting genome-wide redundancy using machine learning
AU - Chen, Huang Wen
AU - Bandyopadhyay, Sunayan
AU - Shasha, Dennis E.
AU - Birnbaum, Kenneth D.
N1 - Funding Information:
We thank Cindy Yang for help in compiling data. We thank the Center for Genomics and Systems Biology for computational research support. We thank Bastiaan Bargmann and Tal Nawy for critical reading of the manuscript. This work was supported by NSF grant DBI-0519984 to K.D.B. and D.E.S. and NIH grant R01 GM078279 to K.D.B.
PY - 2010
Y1 - 2010
N2 - Background. Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in model species where sufficient genetic and genomic data is available, such as Arabidopsis thaliana, the test case used here. Results. Machine learning techniques that combine multiple attributes led to a dramatic improvement in predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this higher confidence in identifying redundancy, machine learning predicts that about half of all genes in Arabidopsis showed the signature of predicted redundancy with at least one but typically less than three other family members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g., Ks > 1), suggesting that redundancy is stable over long evolutionary periods. Conclusions. Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit redundancy with relatively few genes within a family. The predictions and gene pair attributes for Arabidopsis provide a new resource for research in genetics and genome evolution. These techniques can now be applied to other organisms.
AB - Background. Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in model species where sufficient genetic and genomic data is available, such as Arabidopsis thaliana, the test case used here. Results. Machine learning techniques that combine multiple attributes led to a dramatic improvement in predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this higher confidence in identifying redundancy, machine learning predicts that about half of all genes in Arabidopsis showed the signature of predicted redundancy with at least one but typically less than three other family members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g., Ks > 1), suggesting that redundancy is stable over long evolutionary periods. Conclusions. Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit redundancy with relatively few genes within a family. The predictions and gene pair attributes for Arabidopsis provide a new resource for research in genetics and genome evolution. These techniques can now be applied to other organisms.
UR - http://www.scopus.com/inward/record.url?scp=78349246347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78349246347&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-10-357
DO - 10.1186/1471-2148-10-357
M3 - Article
C2 - 21087504
AN - SCOPUS:78349246347
SN - 1471-2148
VL - 10
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 357
ER -