Predicting purchase orders delivery times using regression models with dimension reduction

Jundi Liu, Steven Hwang, Walter Yund, Linda Ng Boyle, Ashis G. Banerjee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In current supply chain operations, the transactions among suppliers and original equipment manufacturers (OEMs) are sometimes inefficient and unreliable due to limited information exchange and lack of knowledge about the supplier capabilities. For the OEMs, majority of downstream operations are sequential, requiring the availabilities of all the parts on time to ensure successful executions of production schedules. Therefore, accurate prediction of the delivery times of purchase orders (POs) is critical to satisfying these requirements. However, such prediction is challenging due to the suppliers’ distributed locations, time-varying capabilities and capacities, and unexpected changes in raw materials procurements. We address some of these challenges by developing supervised machine learning models in the form of Random Forests and Quantile Regression Forests that are trained on historical PO transactional data. Further, given the fact that many predictors are categorical variables, we apply a dimension reduction method to identify the most influential category levels. Results on real-world OEM data show effective performance with substantially lower prediction errors than supplier-provided delivery time estimates.

Original languageEnglish (US)
Title of host publication38th Computers and Information in Engineering Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851739
DOIs
StatePublished - 2018
EventASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018 - Quebec City, Canada
Duration: Aug 26 2018Aug 29 2018

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume1B-2018

Other

OtherASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Country/TerritoryCanada
CityQuebec City
Period8/26/188/29/18

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Predicting purchase orders delivery times using regression models with dimension reduction'. Together they form a unique fingerprint.

Cite this