TY - GEN
T1 - PREEMPT
T2 - 56th Annual Design Automation Conference, DAC 2019
AU - Basu, Kanad
AU - Elnaggar, Rana
AU - Chakrabarty, Krishnendu
AU - Karri, Ramesh
N1 - Publisher Copyright:
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2019/6/2
Y1 - 2019/6/2
N2 - Anti-virus software (AVS) tools are used to detect Malware in a system. However, software-based AVS are vulnerable to attacks. A malicious entity can exploit these vulnerabilities to subvert the AVS. Recently, hardware components such as Hardware Performance Counters (HPC) have been used for Malware detection. In this paper, we propose PREEMPT, a zero overhead, high-accuracy and low-latency technique to detect Malware by re-purposing the embedded trace buffer (ETB), a debug hardware component available in most modern processors. The ETB is used for post-silicon validation and debug and allows us to control and monitor the internal activities of a chip, beyond what is provided by the Input/Output pins. PREEMPT combines these hardware-level observations with machine learning-based classifiers to preempt Malware before it can cause damage. There are many benefits of re-using the ETB for Malware detection. It is difficult to hack into hardware compared to software, and hence, PREEMPT is more robust against attacks than AVS. PREEMPT does not incur performance penalties. Finally, PREEMPT has a high True Positive value of 94% and maintains a low False Positive value of 2%.
AB - Anti-virus software (AVS) tools are used to detect Malware in a system. However, software-based AVS are vulnerable to attacks. A malicious entity can exploit these vulnerabilities to subvert the AVS. Recently, hardware components such as Hardware Performance Counters (HPC) have been used for Malware detection. In this paper, we propose PREEMPT, a zero overhead, high-accuracy and low-latency technique to detect Malware by re-purposing the embedded trace buffer (ETB), a debug hardware component available in most modern processors. The ETB is used for post-silicon validation and debug and allows us to control and monitor the internal activities of a chip, beyond what is provided by the Input/Output pins. PREEMPT combines these hardware-level observations with machine learning-based classifiers to preempt Malware before it can cause damage. There are many benefits of re-using the ETB for Malware detection. It is difficult to hack into hardware compared to software, and hence, PREEMPT is more robust against attacks than AVS. PREEMPT does not incur performance penalties. Finally, PREEMPT has a high True Positive value of 94% and maintains a low False Positive value of 2%.
UR - http://www.scopus.com/inward/record.url?scp=85067795815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067795815&partnerID=8YFLogxK
U2 - 10.1145/3316781.3317883
DO - 10.1145/3316781.3317883
M3 - Conference contribution
AN - SCOPUS:85067795815
T3 - Proceedings - Design Automation Conference
BT - Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 2 June 2019 through 6 June 2019
ER -