Primal-dual block generalized frank-wolfe

Qi Lei, Jiacheng Zhuo, Constantine Caramanis, Inderjit S. Dhillon, Alexandros G. Dimakis

Research output: Contribution to journalConference articlepeer-review

Abstract

We propose a generalized variant of Frank-Wolfe algorithm for solving a class of sparse/low-rank optimization problems. Our formulation includes Elastic Net, regularized SVMs and phase retrieval as special cases. The proposed Primal-Dual Block Generalized Frank-Wolfe algorithm reduces the per-iteration cost while maintaining linear convergence rate. The per iteration cost of our method depends on the structural complexity of the solution (i.e. sparsity/low-rank) instead of the ambient dimension. We empirically show that our algorithm outperforms the state-of-the-art methods on (multi-class) classification tasks.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Primal-dual block generalized frank-wolfe'. Together they form a unique fingerprint.

Cite this