Abstract
Tidal interactions between galaxies can trigger star formation, which contributes to the global star formation rate (SFR) density of the universe and could be a factor in the transformation of blue, star-forming galaxies to red, quiescent galaxies over cosmic time. We investigate tidally triggered star formation in isolated close galaxy pairs drawn from the Prism Multi-Object Survey (PRIMUS), a low-dispersion prism redshift survey that has measured ∼ 120,000 robust galaxy redshifts over 9.1 deg2 out to z ∼ 1. We select a sample of galaxies in isolated galaxy pairs at redshifts 0.25 ≤ z ≤ 0.75, with no other objects within a projected separation of 300 h -1 kpc and Δz/(1 + z) = 0.01, and compare them to a control sample of isolated galaxies to test for systematic differences in their restframe FUV - r and NUV - r colors as a proxy for relative specific star formation rates (SSFRs). We find that galaxies in rp ≤ 50 h -1 kpc pairs have bluer dust-corrected UV - r colors on average than the control galaxies by -0.134 ±0.045 mag in FUV - r and -0.075 ±0.038 mag in NUV -r, corresponding to an ∼15%-20% increase in SSFR. This indicates an enhancement in SSFR due to tidal interactions. We also find that this relative enhancement is greater for a subset of rp ≤ 30h-1 kpc pair galaxies, for which the average color offsets are -0.193 ± 0.065 mag in FUV - r and -0.159 ± 0.048 mag in NUV - r, corresponding to an ∼25%-30% increase in SSFR. We test for evolution in the enhancement of tidally triggered star formation with redshift across our sample redshift range and find marginal evidence for a decrease in SSFR enhancement from 0.25 ≤ z ≤ 0.5 to 0.5 ≤ z ≤ 0.75. This indicates that a change in enhanced star formation triggered by tidal interactions in low-density environments is not a contributor to the decline in the global SFR density across this redshift range.
Original language | English (US) |
---|---|
Journal | Astrophysical Journal |
Volume | 728 |
Issue number | 2 |
DOIs | |
State | Published - Feb 20 2011 |
Keywords
- Galaxies
- Interactions
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science