TY - GEN
T1 - Principal component projection without principal component analysis
AU - Frosting, Roy
AU - Musco, Cameron
AU - Musco, Christopher
AU - Sidford, Aaron
N1 - Publisher Copyright:
© 2016 by the author(s).
PY - 2016
Y1 - 2016
N2 - We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependence on the number of top principal components. We show that it can be used to give a fast iterative method for the popular principal component regression problem, giving the first major runtime improvement over the naive method of combining PCA with regression. To achieve our results, we first observe that ridge regression can be used to obtain a "smooth projection" onto the top principal components. We then sharpen this approximation to true projection using a low-degree polynomial approximation to the matrix step function. Step function approximation is a topic of long-term interest in scientific computing. We extend prior theory by constructing polynomials with simple iterative structure and rigorously analyzing their behavior under limited precision.copyright
AB - We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependence on the number of top principal components. We show that it can be used to give a fast iterative method for the popular principal component regression problem, giving the first major runtime improvement over the naive method of combining PCA with regression. To achieve our results, we first observe that ridge regression can be used to obtain a "smooth projection" onto the top principal components. We then sharpen this approximation to true projection using a low-degree polynomial approximation to the matrix step function. Step function approximation is a topic of long-term interest in scientific computing. We extend prior theory by constructing polynomials with simple iterative structure and rigorously analyzing their behavior under limited precision.copyright
UR - http://www.scopus.com/inward/record.url?scp=84999015111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84999015111&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84999015111
T3 - 33rd International Conference on Machine Learning, ICML 2016
SP - 3495
EP - 3503
BT - 33rd International Conference on Machine Learning, ICML 2016
A2 - Weinberger, Kilian Q.
A2 - Balcan, Maria Florina
PB - International Machine Learning Society (IMLS)
T2 - 33rd International Conference on Machine Learning, ICML 2016
Y2 - 19 June 2016 through 24 June 2016
ER -