Proactive aging mitigation in CGRAs through utilization-aware allocation

Marcelo Brandalero, Bernardo Neuhaus Lignati, Antonio Carlos Schneider Beck, Muhammad Shafique, Michael Hubner

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Resource balancing has been effectively used to mitigate the long-term aging effects of Negative Bias Temperature Instability (NBTI) in multi-core and Graphics Processing Unit (GPU) architectures. In this work, we investigate this strategy in Coarse-Grained Reconfigurable Arrays (CGRAs) with a novel application-to-CGRA allocation approach. By introducing important extensions to the reconfiguration logic and the datapath, we enable the dynamic movement of configurations throughout the fabric and allow overutilized Functional Units (FUs) to recover from stress-induced NBTI aging. Implementing the approach in a resource-constrained state-of-the-art CGRA reveals 2.2× lifetime improvement with negligible performance overheads and less than 10% increase in area.

Original languageEnglish (US)
Title of host publication2020 57th ACM/IEEE Design Automation Conference, DAC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
DOIs
StatePublished - Jul 2020
Event57th ACM/IEEE Design Automation Conference, DAC 2020 - Virtual, San Francisco, United States
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings - Design Automation Conference
Volume2020-July
ISSN (Print)0738-100X

Conference

Conference57th ACM/IEEE Design Automation Conference, DAC 2020
Country/TerritoryUnited States
CityVirtual, San Francisco
Period7/20/207/24/20

Keywords

  • Aging
  • Allocation
  • Coarse-Grained Reconfigurable Arrays (CGRAs)
  • Mapping
  • Reconfigurable systems
  • Utilization-aware

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Proactive aging mitigation in CGRAs through utilization-aware allocation'. Together they form a unique fingerprint.

Cite this