TY - JOUR
T1 - Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns
AU - Bonfante, Estevam A.
AU - Suzuki, Marcelo
AU - Lorenzoni, Fábio C.
AU - Sena, Lídia A.
AU - Hirata, Ronaldo
AU - Bonfante, Gerson
AU - Coelho, Paulo G.
N1 - Publisher Copyright:
© 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
PY - 2015/8/1
Y1 - 2015/8/1
N2 - Objectives To evaluate the probability of survival and failure modes of implant-supported resin nanoceramic relative to metal-ceramic crowns. Methods Resin nanoceramic molar crowns (LU) (Lava Ultimate, 3M ESPE, USA) were milled and metal-ceramic (MC) (Co-Cr alloy, Wirobond C+, Bego, USA) with identical anatomy were fabricated (n = 21). The metal coping and a burnout-resin veneer were created by CAD/CAM, using an abutment (Stealth-abutment, Bicon LLC, USA) and a milled crown from the LU group as models for porcelain hot-pressing (GC-Initial IQ-Press, GC, USA). Crowns were cemented, the implants (n = 42, Bicon) embedded in acrylic-resin for mechanical testing, and subjected to single-load to fracture (SLF, n = 3 each) for determination of step-stress profiles for accelerated-life testing in water (n = 18 each). Weibull curves (50,000 cycles at 200N, 90% CI) were plotted. Weibull modulus (m) and characteristic strength (η) were calculated and a contour plot used (m versus η) for determining differences between groups. Fractography was performed in SEM and polarized-light microscopy. Results SLF mean values were 1871N (±54.03) for MC and 1748N (±50.71) for LU. Beta values were 0.11 for MC and 0.49 for LU. Weibull modulus was 9.56 and η = 1038.8N for LU, and m = 4.57 and η = 945.42N for MC (p > 0.10). Probability of survival (50,000 and 100,000 cycles at 200 and 300N) was 100% for LU and 99% for MC. Failures were cohesive within LU. In MC crowns, porcelain veneer fractures frequently extended to the supporting metal coping. Conclusion Probability of survival was not different between crown materials, but failure modes differed. Significance In load bearing regions, similar reliability should be expected for metal ceramics, known as the gold standard, and resin nanoceramic crowns over implants. Failure modes involving porcelain veneer fracture and delamination in MC crowns are less likely to be successfully repaired compared to cohesive failures in resin nanoceramic material.
AB - Objectives To evaluate the probability of survival and failure modes of implant-supported resin nanoceramic relative to metal-ceramic crowns. Methods Resin nanoceramic molar crowns (LU) (Lava Ultimate, 3M ESPE, USA) were milled and metal-ceramic (MC) (Co-Cr alloy, Wirobond C+, Bego, USA) with identical anatomy were fabricated (n = 21). The metal coping and a burnout-resin veneer were created by CAD/CAM, using an abutment (Stealth-abutment, Bicon LLC, USA) and a milled crown from the LU group as models for porcelain hot-pressing (GC-Initial IQ-Press, GC, USA). Crowns were cemented, the implants (n = 42, Bicon) embedded in acrylic-resin for mechanical testing, and subjected to single-load to fracture (SLF, n = 3 each) for determination of step-stress profiles for accelerated-life testing in water (n = 18 each). Weibull curves (50,000 cycles at 200N, 90% CI) were plotted. Weibull modulus (m) and characteristic strength (η) were calculated and a contour plot used (m versus η) for determining differences between groups. Fractography was performed in SEM and polarized-light microscopy. Results SLF mean values were 1871N (±54.03) for MC and 1748N (±50.71) for LU. Beta values were 0.11 for MC and 0.49 for LU. Weibull modulus was 9.56 and η = 1038.8N for LU, and m = 4.57 and η = 945.42N for MC (p > 0.10). Probability of survival (50,000 and 100,000 cycles at 200 and 300N) was 100% for LU and 99% for MC. Failures were cohesive within LU. In MC crowns, porcelain veneer fractures frequently extended to the supporting metal coping. Conclusion Probability of survival was not different between crown materials, but failure modes differed. Significance In load bearing regions, similar reliability should be expected for metal ceramics, known as the gold standard, and resin nanoceramic crowns over implants. Failure modes involving porcelain veneer fracture and delamination in MC crowns are less likely to be successfully repaired compared to cohesive failures in resin nanoceramic material.
KW - Crown
KW - Fatigue
KW - Fractography
KW - Implant
KW - Metal ceramic
KW - Resin nanoceramic
KW - Step-stress accelerated life test
KW - Weibull
UR - http://www.scopus.com/inward/record.url?scp=84937514888&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937514888&partnerID=8YFLogxK
U2 - 10.1016/j.dental.2015.05.006
DO - 10.1016/j.dental.2015.05.006
M3 - Article
C2 - 26074312
AN - SCOPUS:84937514888
SN - 0109-5641
VL - 31
SP - e168-e177
JO - Dental Materials
JF - Dental Materials
IS - 8
ER -