Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy

Taesung Jung, Xiaoxia Sheng, Chang Kyun Choi, Woo Sik Kim, Jeffrey A. Wesson, Michael D. Ward

Research output: Contribution to journalArticlepeer-review


Kidney stones are crystal aggregates, most commonly containing calcium oxalate monohydrate (COM) microcrystals as the primary constituent. Macromolecules, specifically proteins rich with anionic side chains, are thought to play an important role in the regulation of COM growth, aggregation, and attachment to cells, all key processes in kidney stone formation. The microscopic events associated with crystal growth on the {010}, {121̄}, and {100} faces have been examined with in situ atomic force microscopy (AFM). Lattice images of each face reveal two-dimensional unit cells consistent with the COM crystal structure. Each face exhibits hillocks with step sites that can be assigned to specific crystal planes, enabling direct determination of growth rates along specific crystallography directions. The rates of growth are found to depend on the degree of supersaturation of calcium oxalate in the growth medium, and the growth rates are very sensitive to the manner in which the growth solutions are prepared and introduced to the AFM cell. The addition of macromolecules with anionic side chains, specifically poly(acrylic acid), poly(aspartic acid), and poly(glutamic acid), results in inhibition of growth on the hillock step planes. The magnitude of this effect depends on the macromolecule structure, macromolecule concentration, and the identity of the step site. Poly(acrylic acid) was the most effective inhibitor of growth. Whereas poly(aspartic acid) inhibited growth on the (021) step planes of the (100) hillocks more than poly(glutamic acid), the opposite was found for the same step planes on the (010) hillocks. This suggests that growth inhibition is due to macromolecule binding to both planes of the step site or pinning of the steps due to binding to the (100) and (010) faces alone. The different profiles observed for these three macromolecules argue that local binding of anionic side chains to crystal surface sites governs growth inhibition rather than any secondary polymer structure. Growth inhibition by cationic macromolecules is negligible, further supporting an important role for proteins rich in anionic side chains in the regulation of kidney stone formation.

Original languageEnglish (US)
Pages (from-to)8587-8596
Number of pages10
Issue number20
StatePublished - Sep 28 2004

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy'. Together they form a unique fingerprint.

Cite this