Probing to Minimize

Weina Wang, Anupam Gupta, Jalani K. Williams

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We develop approximation algorithms for set-selection problems with deterministic constraints, but random objective values, i.e., stochastic probing problems. When the goal is to maximize the objective, approximation algorithms for probing problems are well-studied. On the other hand, few techniques are known for minimizing the objective, especially in the adaptive setting, where information about the random objective is revealed during the set-selection process and allowed to influence it. For minimization problems in particular, incorporating adaptivity can have a considerable effect on performance. In this work, we seek approximation algorithms that compare well to the optimal adaptive policy. We develop new techniques for adaptive minimization, applying them to a few problems of interest. The core technique we develop here is an approximate reduction from an adaptive expectation minimization problem to a set of adaptive probability minimization problems which we call threshold problems. By providing near-optimal solutions to these threshold problems, we obtain bicriteria adaptive policies. We apply this method to obtain an adaptive approximation algorithm for the Min-Element problem, where the goal is to adaptively pick random variables to minimize the expected minimum value seen among them, subject to a knapsack constraint. This partially resolves an open problem raised in [5]. We further consider three extensions on the Min-Element problem, where our objective is the sum of the smallest k element-weights, or the weight of the min-weight basis of a given matroid, or where the constraint is not given by a knapsack but by a matroid constraint. For all three of the variations we explore, we develop adaptive approximation algorithms for their corresponding threshold problems, and prove their near-optimality via coupling arguments.

Original languageEnglish (US)
Title of host publication13th Innovations in Theoretical Computer Science Conference, ITCS 2022
EditorsMark Braverman
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772174
DOIs
StatePublished - Jan 1 2022
Event13th Innovations in Theoretical Computer Science Conference, ITCS 2022 - Berkeley, United States
Duration: Jan 31 2022Feb 3 2022

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume215
ISSN (Print)1868-8969

Conference

Conference13th Innovations in Theoretical Computer Science Conference, ITCS 2022
Country/TerritoryUnited States
CityBerkeley
Period1/31/222/3/22

Keywords

  • Approximation algorithms
  • Minimization
  • Stochastic probing

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Probing to Minimize'. Together they form a unique fingerprint.

Cite this