TY - GEN
T1 - projUNN
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
AU - Kiani, Bobak T.
AU - Balestriero, Randall
AU - LeCun, Yann
AU - Lloyd, Seth
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - In learning with recurrent or very deep feed-forward networks, employing unitary matrices in each layer can be very effective at maintaining long-range stability. However, restricting network parameters to be unitary typically comes at the cost of expensive parameterizations or increased training runtime. We propose instead an efficient method based on rank-k updates - or their rank-k approximation - that maintains performance at a nearly optimal training runtime. We introduce two variants of this method, named Direct (projUNN-D) and Tangent (projUNN-T) projected Unitary Neural Networks, that can parameterize full N-dimensional unitary or orthogonal matrices with a training runtime scaling as O(kN2). Our method either projects low-rank gradients onto the closest unitary matrix (projUNN-T) or transports unitary matrices in the direction of the low-rank gradient (projUNN-D). Even in the fastest setting (k = 1), projUNN is able to train a model's unitary parameters to reach comparable performances against baseline implementations. In recurrent neural network settings, projUNN closely matches or exceeds benchmarked results from prior unitary neural networks. Finally, we preliminarily explore projUNN in training orthogonal convolutional neural networks, which are currently unable to outperform state of the art models but can potentially enhance stability and robustness at large depth.
AB - In learning with recurrent or very deep feed-forward networks, employing unitary matrices in each layer can be very effective at maintaining long-range stability. However, restricting network parameters to be unitary typically comes at the cost of expensive parameterizations or increased training runtime. We propose instead an efficient method based on rank-k updates - or their rank-k approximation - that maintains performance at a nearly optimal training runtime. We introduce two variants of this method, named Direct (projUNN-D) and Tangent (projUNN-T) projected Unitary Neural Networks, that can parameterize full N-dimensional unitary or orthogonal matrices with a training runtime scaling as O(kN2). Our method either projects low-rank gradients onto the closest unitary matrix (projUNN-T) or transports unitary matrices in the direction of the low-rank gradient (projUNN-D). Even in the fastest setting (k = 1), projUNN is able to train a model's unitary parameters to reach comparable performances against baseline implementations. In recurrent neural network settings, projUNN closely matches or exceeds benchmarked results from prior unitary neural networks. Finally, we preliminarily explore projUNN in training orthogonal convolutional neural networks, which are currently unable to outperform state of the art models but can potentially enhance stability and robustness at large depth.
UR - http://www.scopus.com/inward/record.url?scp=85143900337&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143900337&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85143900337
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
Y2 - 28 November 2022 through 9 December 2022
ER -