Propagation path loss models for 5G urban micro-and macro-cellular scenarios

Shu Sun, Theodore S. Rappaport, Sundeep Rangan, Timothy A. Thomas, Amitava Ghosh, Istvan Z. Kovacs, Ignacio Rodriguez, Ozge Koymen, Andrzej Partyka, Jan Jarvelainen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents and compares two candidate large-scale propagation path loss models, the alpha-beta-gamma (ABG) model and the close-in (CI) free space reference distance model, for the design of fifth generation (5G) wireless communication systems in urban micro- and macro-cellular scenarios. Comparisons are made using the data obtained from 20 propagation measurement campaigns or ray- tracing studies from 2 GHz to 73.5 GHz over distances ranging from 5 m to 1429 m. The results show that the one-parameter CI model has a very similar goodness of fit (i.e., the shadow fading standard deviation) in both line-of-sight and non-line-of-sight environments, while offering substantial simplicity and more stable behavior across frequencies and distances, as compared to the three-parameter ABG model. Additionally, the CI model needs only one very subtle and simple modification to the existing 3GPP floating-intercept path loss model (replacing a constant with a close-in free space reference value) in order to provide greater simulation accuracy, more simplicity, better repeatability across experiments, and higher stability across a vast range of frequencies.

Original languageEnglish (US)
Title of host publication2016 IEEE 83rd Vehicular Technology Conference, VTC Spring 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509016983
DOIs
StatePublished - Jul 5 2016
Event83rd IEEE Vehicular Technology Conference, VTC Spring 2016 - Nanjing, China
Duration: May 15 2016May 18 2016

Publication series

NameIEEE Vehicular Technology Conference
Volume2016-July
ISSN (Print)1550-2252

Other

Other83rd IEEE Vehicular Technology Conference, VTC Spring 2016
CountryChina
CityNanjing
Period5/15/165/18/16

ASJC Scopus subject areas

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Propagation path loss models for 5G urban micro-and macro-cellular scenarios'. Together they form a unique fingerprint.

Cite this