Protein geranylgeranylation is required for osteoclast formation, function, and survival: Inhibition by bisphosphonates and GGTI-298

Fraser P. Coxon, Miep H. Helfrich, Robert Van't Hof, Saïd Sebti, Stuart H. Ralston, Andrew Hamilton, Michael J. Rogers

Research output: Contribution to journalArticlepeer-review

Abstract

Bisphosphonates are the important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Although their molecular mechanism of action has not been fully elucidated, recent studies have shown that the nitrogen-containing bisphosphonates can inhibit protein prenylation in macrophages in vitro. In this study, we show that the nitrogen-containing bisphosphonates risedronate, zoledronate, ibandronate, alendronate, and pamidronate (but not the non nitrogen-containing bisphosphonates clodronate, etidronate, and tiludronate) prevent the incorporation of [14C]mevalonate into prenylated (farnesylated and geranylgeranylated) proteins in purified rabbit osteoclasts. The inhibitory effect of nitrogen-containing bisphosphonates on bone resorption is likely to result largely from the loss of geranylgeranylated proteins rather than loss of farnesylated proteins in osteoclasts, because concentrations of GGTI-298 (a specific inhibitor of geranylgeranyl transferase I) that inhibited protein geranylgeranylation in purified rabbit osteoclasts prevented osteoclast formation in murine bone marrow cultures, disrupted the osteoclast cytoskeleton, inhibited bone resorption, and induced apoptosis in isolated chick and rabbit osteoclasts in vitro. By contrast, concentrations of FTI-277 (a specific inhibitor of farnesyl transferase) that prevented protein farnesylation in purified rabbit osteoclasts had little effect on osteoclast morphology or apoptosis and did not inhibit bone resorption. These results therefore show the molecular mechanism of action of nitrogen-containing bisphosphonate drugs in osteoclasts and highlight the fundamental importance of geranylgeranylated proteins in osteoclast formation and function.

Original languageEnglish (US)
Pages (from-to)1467-1476
Number of pages10
JournalJournal of Bone and Mineral Research
Volume15
Issue number8
DOIs
StatePublished - 2000

Keywords

  • Apoptosis
  • Bisphosphonate
  • Mevalonate
  • Osteoclast
  • Prenylation

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Protein geranylgeranylation is required for osteoclast formation, function, and survival: Inhibition by bisphosphonates and GGTI-298'. Together they form a unique fingerprint.

Cite this