Proteinaceous precursors of human axillary odor: Isolation of two novel odor-binding proteins

A. I. Spielman, X. N. Zeng, J. J. Leyden, G. Preti

Research output: Contribution to journalArticlepeer-review

Abstract

The characteristic odor which arises in the human axillary region consists of volatile C6-C11 acids with the most abundant being (E)-3-methyl-2-hexenoic acid (E-3M2H). This acid, as well as several other components of the characteristic axillary odor, can be liberated from the odorless, aqueous soluble components of apocrine secretion by either saponification or bacteriolysis. It is therefore likely that a major characteristic odor is being carried to the skin surface bound to a water soluble precursor where it is liberated by axillary bacteria. The individual proteins found in apocrine secretions were separated, isolated and hydrolyzed with the resultant hydrolyzates analyzed by gas chromatography/mass spectrometry. These studies demonstrated that 3M2H was liberated from 2 proteins with apparent molecular mass of 26 and 45 kilodaltons: Apocrine Secretion Odor-Binding Protein 1 and 2, respectively (ASOB1 and ASOB2). Antisera to these proteins were prepared and used to examine a variety of other body fluids. Several fluids contained an immunoreactive protein with the same electrophoretic migration pattern as the 45 KDa protein. Three of these body fluids (tears, nasal secretions and saliva) were separated into aqueous and organic soluble fractions and hydrolyzed to demonstrate that 3M2H could be liberated from the aqueous soluble materials. These results suggest interesting parallels between non-human mammalian odors used as chemical signals and human axillary odor. Previous studies have suggested the axillae as a source of human primer-type pheromones; consequently, if the odors which characterize the underarm are responsible for; the pheromonal activity, then the chemistry involved may be similar to that in other mammalian chemical communication systems where proteins act as carriers of one or more chemical signals.

Original languageEnglish (US)
Pages (from-to)40-47
Number of pages8
JournalExperientia
Volume51
Issue number1
StatePublished - 1995

Keywords

  • 3-methyl-2-hexenoic acid
  • Axillary odors
  • Odor-binding proteins
  • Primer pheronomes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Proteinaceous precursors of human axillary odor: Isolation of two novel odor-binding proteins'. Together they form a unique fingerprint.

Cite this