Abstract
Using a combined pharmacological and gene-deletion approach, we have delineated a novel mechanism of neurokinin-1 (NK-1) receptor-dependent hyperalgesia induced by proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor expressed on nociceptive primary afferent neurons. Injections into the paw of sub-inflammatory doses of PAR2 agonists in rats and mice induced a prolonged thermal and mechanical hyperalgesia and elevated spinal Fos protein expression. This hyperalgesia was markedly diminished or absent in mice lacking the NK-1 receptor, preprotachykinin-A or PAR2 genes, or in rats treated with a centrally acting cyclooxygenase inhibitor or treated by spinal cord injection of NK-1 antagonists. Here we identify a previously unrecognized nociceptive pathway with important therapeutic implications, and our results point to a direct role for proteinases and their receptors in pain transmission.
Original language | English (US) |
---|---|
Pages (from-to) | 821-826 |
Number of pages | 6 |
Journal | Nature Medicine |
Volume | 7 |
Issue number | 7 |
DOIs | |
State | Published - 2001 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology