Provable Posterior Sampling with Denoising Oracles via Tilted Transport

Joan Bruna, Jiequn Han

Research output: Contribution to journalConference articlepeer-review

Abstract

Score-based diffusion models have significantly advanced high-dimensional data generation across various domains, by learning a denoising oracle (or score) from datasets. From a Bayesian perspective, they offer a realistic modeling of data priors and facilitate solving inverse problems through posterior sampling. Although many heuristic methods have been developed recently for this purpose, they lack the quantitative guarantees needed in many scientific applications. This work addresses the topic from two perspectives. We first present a hardness result indicating that a generic method leveraging the prior denoising oracle for posterior sampling becomes infeasible as soon as the measurement operator is mildly ill-conditioned. We next develop the tilted transport technique, which leverages the quadratic structure of the log-likelihood in linear inverse problems in combination with the prior denoising oracle to exactly transform the original posterior sampling problem into a new one that is provably easier to sample from. We quantify the conditions under which the boosted posterior is strongly log-concave, highlighting how task difficulty depends on the condition number of the measurement matrix and the signal-to-noise ratio. The resulting general scheme is shown to match the best-known sampling methods for Ising models, and is further validated on high-dimensional Gaussian mixture models.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Provable Posterior Sampling with Denoising Oracles via Tilted Transport'. Together they form a unique fingerprint.

Cite this