TY - GEN
T1 - Provable security of (tweakable) block ciphers based on substitution-permutation networks
AU - Cogliati, Benoît
AU - Dodis, Yevgeniy
AU - Katz, Jonathan
AU - Lee, Jooyoung
AU - Steinberger, John
AU - Thiruvengadam, Aishwarya
AU - Zhang, Zhe
N1 - Publisher Copyright:
© International Association for Cryptologic Research 2018.
PY - 2018
Y1 - 2018
N2 - Substitution-Permutation Networks (SPNs) refer to a family of constructions which build a wn-bit block cipher from n-bit public permutations (often called S-boxes), which alternate keyless and “local” substitution steps utilizing such S-boxes, with keyed and “global” permutation steps which are non-cryptographic. Many widely deployed block ciphers are constructed based on the SPNs, but there are essentially no provable-security results about SPNs. In this work, we initiate a comprehensive study of the provable security of SPNs as (possibly tweakable) wn-bit block ciphers, when the underlying n-bit permutation is modeled as a public random permutation. When the permutation step is linear (which is the case for most existing designs), we show that 3 SPN rounds are necessary and sufficient for security. On the other hand, even 1-round SPNs can be secure when non-linearity is allowed. Moreover, 2-round non-linear SPNs can achieve “beyond-birthday” (up to 22n/3adversarial queries) security, and, as the number of non-linear rounds increases, our bounds are meaningful for the number of queries approaching 2n. Finally, our non-linear SPNs can be made tweakable by incorporating the tweak into the permutation layer, and provide good multi-user security. As an application, our construction can turn two public n-bit permutations (or fixed-key block ciphers) into a tweakable block cipher working on wn-bit inputs, 6n-bit key and an n-bit tweak (for any w≥ 2); the tweakable block cipher provides security up to 22n/3 adversarial queries in the random permutation model, while only requiring w calls to each permutation, and 3w field multiplications for each wn-bit input.
AB - Substitution-Permutation Networks (SPNs) refer to a family of constructions which build a wn-bit block cipher from n-bit public permutations (often called S-boxes), which alternate keyless and “local” substitution steps utilizing such S-boxes, with keyed and “global” permutation steps which are non-cryptographic. Many widely deployed block ciphers are constructed based on the SPNs, but there are essentially no provable-security results about SPNs. In this work, we initiate a comprehensive study of the provable security of SPNs as (possibly tweakable) wn-bit block ciphers, when the underlying n-bit permutation is modeled as a public random permutation. When the permutation step is linear (which is the case for most existing designs), we show that 3 SPN rounds are necessary and sufficient for security. On the other hand, even 1-round SPNs can be secure when non-linearity is allowed. Moreover, 2-round non-linear SPNs can achieve “beyond-birthday” (up to 22n/3adversarial queries) security, and, as the number of non-linear rounds increases, our bounds are meaningful for the number of queries approaching 2n. Finally, our non-linear SPNs can be made tweakable by incorporating the tweak into the permutation layer, and provide good multi-user security. As an application, our construction can turn two public n-bit permutations (or fixed-key block ciphers) into a tweakable block cipher working on wn-bit inputs, 6n-bit key and an n-bit tweak (for any w≥ 2); the tweakable block cipher provides security up to 22n/3 adversarial queries in the random permutation model, while only requiring w calls to each permutation, and 3w field multiplications for each wn-bit input.
KW - Beyond-birthday-bound security
KW - Domain extension of block ciphers
KW - Substitution-permutation networks
KW - Tweakable block ciphers
UR - http://www.scopus.com/inward/record.url?scp=85052380695&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052380695&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-96884-1_24
DO - 10.1007/978-3-319-96884-1_24
M3 - Conference contribution
AN - SCOPUS:85052380695
SN - 9783319968834
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 722
EP - 753
BT - Advances in Cryptology – CRYPTO 2018 - 38th Annual International Cryptology Conference, 2018, Proceedings
A2 - Boldyreva, Alexandra
A2 - Shacham, Hovav
PB - Springer Verlag
T2 - 38th Annual International Cryptology Conference, CRYPTO 2018
Y2 - 19 August 2018 through 23 August 2018
ER -