Pseudorandomness of ring-LWE for any ring and modulus

Chris Peikert, Oded Regev, Noah Stephens-Davidowitz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We give a polynomial-time quantum reduction from worst-case (ideal) lattice problems directly to decision (Ring-)LWE. This extends to decision all the worst-case hardness results that were previously known for the search version, for the same or even better parameters and with no algebraic restrictions on the modulus or number field. Indeed, our reduction is the first that works for decision Ring-LWE with any number field and any modulus.

Original languageEnglish (US)
Title of host publicationSTOC 2017 - Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
EditorsPierre McKenzie, Valerie King, Hamed Hatami
PublisherAssociation for Computing Machinery
Pages461-473
Number of pages13
ISBN (Electronic)9781450345286
DOIs
StatePublished - Jun 19 2017
Event49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017 - Montreal, Canada
Duration: Jun 19 2017Jun 23 2017

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
VolumePart F128415
ISSN (Print)0737-8017

Other

Other49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017
Country/TerritoryCanada
CityMontreal
Period6/19/176/23/17

Keywords

  • Lattices
  • Learning with errors

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Pseudorandomness of ring-LWE for any ring and modulus'. Together they form a unique fingerprint.

Cite this