PTH ablation ameliorates the anomalies of Fgf23-deficient mice by suppressing the elevated vitamin D and calcium levels

Quan Yuan, Despina Sitara, Tadatoshi Sato, Michael Densmore, Hiroaki Saito, Christine Schul̈er, Reinhold G. Erben, Beate Lanske

Research output: Contribution to journalArticlepeer-review

Abstract

Fibroblast growth factor 23 (FGF23) is a key regulator of mineral ion homeostasis. Genetic ablation of Fgf23 in mice leads to severe biochemical disorders including elevated serum 1,25-dihydroxyvitamin D [1,25(OH) 2D], hypercalcemia, hyperphosphatemia, and marked decreased PTH levels. Because PTH stimulates 1,25(OH) 2D production and increases serum calcium levels, we hypothesized that ablation of PTH from the Fgf23 knockout (Fgf23 -/-) mice could suppress these affects, thus ameliorating the soft tissue and skeletal anomalies in these animals. In this study, we generated a genetic mouse model with dual ablation of the Fgf23/PTH genes. The data show that deletion of PTH does suppress the markedly higher serum 1,25(OH) 2D and calcium levels observed in Fgf23 -/- mice and results in much larger, heavier, and more active double-knockout mice with improved soft tissue and skeletal phenotypes. On the contrary, when we infused PTH (1-34) peptide into Fgf23 -/- mice using osmotic minipumps, serum 1,25(OH) 2D and calcium levels were increased even further, leading to marked reduction in trabecular bone. These results indicate that PTH is able to modulate the anomalies of Fgf23 -/- mice by controlling serum 1,25(OH) 2D and calcium levels.

Original languageEnglish (US)
Pages (from-to)4053-4061
Number of pages9
JournalEndocrinology
Volume152
Issue number11
DOIs
StatePublished - Nov 2011

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'PTH ablation ameliorates the anomalies of Fgf23-deficient mice by suppressing the elevated vitamin D and calcium levels'. Together they form a unique fingerprint.

Cite this