Abstract
In this paper, we make a first attempt to incorporate both commuting demand and transit network connectivity in bus route planning (CT-Bus), and formulate it as a constrained optimization problem: planning a new bus route with k edges over an existing transit network without building new bus stops to maximize a linear aggregation of commuting demand and connectivity of the transit network. We prove the NP-hardness of CT-Bus and propose an expansion-based greedy algorithm that iteratively scans potential candidate paths in the network. To boost the efficiency of computing the connectivity of new networks with candidate paths, we convert it to a matrix trace estimation problem and employ a Lanczos method to estimate the natural connectivity of the transit network with a guaranteed error bound. Furthermore, we derive upper bounds on the objective values and use them to greedily select candidates for expansion. Our experiments conducted on real-world transit networks in New York City and Chicago verify the efficiency, effectiveness, and scalability of our algorithms.
Original language | English (US) |
---|---|
Pages (from-to) | 1906-1919 |
Number of pages | 14 |
Journal | Proceedings of the ACM SIGMOD International Conference on Management of Data |
DOIs | |
State | Published - 2021 |
Event | 2021 International Conference on Management of Data, SIGMOD 2021 - Virtual, Online, China Duration: Jun 20 2021 → Jun 25 2021 |
Keywords
- bus route planning
- commuting demand
- trajectory
- transit connectivity
ASJC Scopus subject areas
- Software
- Information Systems