PVDF Hollow-Fiber Membrane Formation and Production

Panu Sukitpaneenit, Yee Kang Ong, Tai-Shung Chung, Nidal Hilal

Research output: Contribution to journalArticlepeer-review

Abstract

The advances and breakthroughs in molecular design of membrane materials and membrane fabrication are of paramount importance to expand membrane technologies in modern separation processes. Because the first polymeric hollow-fiber membrane was patented as a separation device by Mahon in 1966 [1], research on hollow-fiber membranes has received worldwide attention from both academia and industry, and hollow-fiber membranes made from different polymeric materials have progressively penetrated into various separation processes and applications. Compared with conventional flat-sheet membranes, the hollowfiber configuration offers several advantages due to its inherent characteristics and module design such as (1) a larger membrane area per unit volume of membrane modules, which results in a higher productivity;(2) good self-mechanical support to withstand backwashing for liquid separation; and (3) ease of handling during module fabrication and process operation [2–5]. Nowadays, hollow-fiber membranes are widely employed as the alternative to traditional separation techniques in a broad spectrum of applications related to energy, water production, environmental, and health sciences. Poly (vinylidene fluoride)(PVDF) is one of the promising polymeric materials that has prominently emerged in membrane research and development (R&D) due to its excellent chemical and physical properties such as highly hydrophobic nature, robust mechanical strength, good thermal stability, and superior chemical resistance.
Original languageEnglish (US)
Pages (from-to)215-248
JournalMembrane Fabrication
Volume7
StatePublished - 2015

Fingerprint Dive into the research topics of 'PVDF Hollow-Fiber Membrane Formation and Production'. Together they form a unique fingerprint.

Cite this