Quadrotor landing on an inclined platform of a moving ground vehicle

Panagiotis Vlantis, Panos Marantos, Charalampos P. Bechlioulis, Kostas J. Kyriakopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work we study the problem of landing a quadrotor on an inclined moving platform. The aerial robot employs an forward looking on-board camera to detect and observe the landing platform, which is carried by a mobile robot moving independently on an inclined surface. The platform may also be tilted with respect to the mobile robot. The overall goal is to design the aerial robot's control inputs such that it initially approaches the platform, while maintaining it within the camera's field of view and finally lands on it, in a way that minimizes the errors in position, attitude and velocity, while avoiding collision. Owing to the inclined ground and landing surface, the desired final state of the aerial robot is not an equilibrium state, which complicates significantly the control design. In that respect, a discrete-time non-linear model predictive controller was developed that optimizes both the trajectories and the time horizon, towards achieving the aforementioned objectives while respecting the input constraints as well. Finally, an extensive experimental study, with a Pioneer mobile robot and a Parrot ARDrone quadrotor, clarifies and verifies the theoretical findings.

Original languageEnglish (US)
Title of host publication2015 IEEE International Conference on Robotics and Automation, ICRA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2202-2207
Number of pages6
EditionJune
ISBN (Electronic)9781479969234
DOIs
StatePublished - Jun 29 2015
Event2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States
Duration: May 26 2015May 30 2015

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
NumberJune
Volume2015-June
ISSN (Print)1050-4729

Other

Other2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Country/TerritoryUnited States
CitySeattle
Period5/26/155/30/15

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Quadrotor landing on an inclined platform of a moving ground vehicle'. Together they form a unique fingerprint.

Cite this