Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks

Semiha Ergan, Ahmed Radwan, Zhengbo Zou, Hua An Tseng, Xue Han

Research output: Contribution to journalArticlepeer-review

Abstract

People spend more than 90% of their time indoors, making it essential to understand how the built environment can influence human experience and assess how the changes in architectural design features can impact this experience. Human experience in an architectural space is defined as the state of mind that is reflected on our physiological, emotional, and cognitive statuses. Previous studies attempted to explain the relation between architectural design features (e.g., the existence of daylight and connectivity to nature) and human experience. However, the extent of how different design features influence human experience has not been fully quantified yet. This study provides an integrated method that fuses virtual reality and noninvasive body area sensor networks (BSNs) to quantify human experience in architectural spaces. Using a set of biometric sensors, several physiological metrics such as skin conductance, brain activity, and heart rate were captured and examined while subjects were navigating and performing tasks in virtual environments (VEs). The integrated platform has been used to quantify the sense of stress and anxiety through structured user experiments in a visualization laboratory using alternate VEs configured by varying the related set of architectural design features. To generalize the findings of this study, a large pool of participants was invited to the experiments, where statistically significantly different results could be obtained. The analysis of the collected body sensor data showed that the human response changes with architectural design, with more than 40% of the electroencephalogram (EEG) oscillations having higher values across all channels on all frequency bands, 141% having an increase in galvanic skin response (GSR) readings, and lower heart rate variability in photoplethysmogram (PPG) in the stress-reducing environment as compared with the stress-inducing environment. The presented approach provides a systematic way for architectural design firms to get user feedback before the design is finalized for achieving the ultimate experience among the proposed design alternatives.

Original languageEnglish (US)
Article number04018062
JournalJournal of Computing in Civil Engineering
Volume33
Issue number2
DOIs
StatePublished - Mar 1 2019

Keywords

  • Architecture design
  • Biometric sensors
  • Body sensor networks
  • Electroencephalogram (EEG)
  • Human experience
  • Neuroscience
  • Virtual reality

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks'. Together they form a unique fingerprint.

Cite this