Abstract
We report how two flexible diphenylacetylene (DPA) derivatives distort to accommodate both cationic and anionic partners in the binary X ±·DPA series with X = TMA+ (tetramethylammonium), Na+, Cl-, Br-, and I-. This is accomplished through theoretical analysis of X ±·DPA·2D2 vibrational spectra, acquired by predissociation of the weakly bound D2 adducts formed in a 10 K ion trap. DPA binds the weakly coordinating TMA+ ion with an arrangement similar to that of the neutral compound, whereas the smaller Na + ion breaks all intramolecular H-bonds yielding a structure akin to the transition state for interconversion of the two conformations in neutral DPA. Halides coordinate to the urea NH donors in a bidentate H-bonded configuration analogous to the single intramolecular H-bonded motif identified at high chloride concentrations in solution. Three positions of the "switch" are thus identified in the intrinsic ion accommodation profile that differ by the number of intramolecular H-bonds (0, 1, or 2) at play.
Original language | English (US) |
---|---|
Pages (from-to) | 5962-5969 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry A |
Volume | 117 |
Issue number | 29 |
DOIs | |
State | Published - Jul 25 2013 |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry