Quantifying resource competition and its effects in the TX-TL system

Andras Gyorgy, Richard M. Murray

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Without accounting for the limited availability of shared cellular resources, the standard model of gene expression fails to reliably predict experimental data obtained in vitro. To overcome this limitation, we develop a dynamical model of gene expression explicitly modeling competition for scarce resources. In addition to accurately describing the experimental data, this model only depends on a handful of easily identifiable parameters with clear physical interpretation. Based on this model, we then characterize the combinations of protein concentrations that are simultaneously realizable with shared resources. As application examples, we demonstrate how the results can be used to explain similarities/differences among different in vitro extracts, furthermore, we illustrate that accounting for resource usage is essential in circuit design considering the toggle switch.

Original languageEnglish (US)
Title of host publication2016 IEEE 55th Conference on Decision and Control, CDC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3363-3368
Number of pages6
ISBN (Electronic)9781509018376
DOIs
StatePublished - Dec 27 2016
Event55th IEEE Conference on Decision and Control, CDC 2016 - Las Vegas, United States
Duration: Dec 12 2016Dec 14 2016

Publication series

Name2016 IEEE 55th Conference on Decision and Control, CDC 2016

Other

Other55th IEEE Conference on Decision and Control, CDC 2016
Country/TerritoryUnited States
CityLas Vegas
Period12/12/1612/14/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Decision Sciences (miscellaneous)
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Quantifying resource competition and its effects in the TX-TL system'. Together they form a unique fingerprint.

Cite this