TY - JOUR
T1 - Quantifying the variability of the annular modes
T2 - Reanalysis uncertainty vs. sampling uncertainty
AU - Gerber, Edwin P.
AU - Martineau, Patrick
N1 - Funding Information:
EPG acknowledges support from the US National Science Foundation through grant AGS-1546585 to New York University. PM acknowledges support as an international research fellow of the Japan Society for the Promotion of Science. We thank Julie Arblaster and two anonymous reviewers for helpful comments on earlier versions of the paper, the reanalysis centers for making their data publicly available, and the Statospheretroposphere Processes And their Role in Climate (SPARC) activity of the World Climate Research Program for their help in organizing the SPARC-Reanalysis Intercomparison Project, which inspired this research.
Publisher Copyright:
© Author(s) 2018.
PY - 2018/12/4
Y1 - 2018/12/4
N2 - The annular modes characterize the dominant variability of the extratropical circulation in each hemisphere, quantifying vacillations in the position of the tropospheric jet streams and the strength of the stratospheric polar vortices. Their representation in all available reanalysis products is assessed. Reanalysis uncertainty associated with limitations in the ability to constrain the circulation with available observations, i.e., the inter-reanalysis spread, is contrasted with sampling uncertainty associated with the finite length of the reanalysis records. It is shown that the annular modes are extremely consistent across all modern reanalyses during the satellite era (ca. 1979 onward). Consequently, uncertainty in annular mode variability, e.g., the coupling between the stratosphere and troposphere and the variation in the amplitude and timescale of jet variations throughout the annual cycle, is dominated by sampling uncertainty. Comparison of reanalyses based on conventional (i.e., nonsatellite) or surface observations alone with those using all available observations indicates that there is limited ability to characterize the Southern Annular Mode (SAM) in the presatellite era. Notably, prior to 1979, surface-input reanalyses better capture the SAM at near-surface levels than full-input reanalyses. For the Northern Annular Mode, however, there is evidence that conventional observations are sufficient, at least from 1958 onward. The addition of 2 additional decades of records substantially reduces sampling uncertainty in several key measures of annular mode variability, demonstrating the value of more historic reanalyses. Implications for the assessment of atmospheric models and the strength of coupling between the surface and upper atmosphere are discussed.
AB - The annular modes characterize the dominant variability of the extratropical circulation in each hemisphere, quantifying vacillations in the position of the tropospheric jet streams and the strength of the stratospheric polar vortices. Their representation in all available reanalysis products is assessed. Reanalysis uncertainty associated with limitations in the ability to constrain the circulation with available observations, i.e., the inter-reanalysis spread, is contrasted with sampling uncertainty associated with the finite length of the reanalysis records. It is shown that the annular modes are extremely consistent across all modern reanalyses during the satellite era (ca. 1979 onward). Consequently, uncertainty in annular mode variability, e.g., the coupling between the stratosphere and troposphere and the variation in the amplitude and timescale of jet variations throughout the annual cycle, is dominated by sampling uncertainty. Comparison of reanalyses based on conventional (i.e., nonsatellite) or surface observations alone with those using all available observations indicates that there is limited ability to characterize the Southern Annular Mode (SAM) in the presatellite era. Notably, prior to 1979, surface-input reanalyses better capture the SAM at near-surface levels than full-input reanalyses. For the Northern Annular Mode, however, there is evidence that conventional observations are sufficient, at least from 1958 onward. The addition of 2 additional decades of records substantially reduces sampling uncertainty in several key measures of annular mode variability, demonstrating the value of more historic reanalyses. Implications for the assessment of atmospheric models and the strength of coupling between the surface and upper atmosphere are discussed.
UR - http://www.scopus.com/inward/record.url?scp=85057736358&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057736358&partnerID=8YFLogxK
U2 - 10.5194/acp-18-17099-2018
DO - 10.5194/acp-18-17099-2018
M3 - Article
AN - SCOPUS:85057736358
SN - 1680-7316
VL - 18
SP - 17099
EP - 17117
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 23
ER -